Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Endocrinol ; 190(4): 296-306, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561929

RESUMO

OBJECTIVE: The calcium-sensing receptor (CASR) gene encodes a G protein-coupled receptor crucial for calcium homeostasis. Gain-of-function CASR variants result in hypocalcemia, while loss-of-function variants lead to hypercalcemia. This study aims to assess the functional consequences of the novel nonsense CASR variant [c.2897_2898insCTGA, p.(Gln967*) (Q967*)] identified in adolescent patient with chronic hypocalcemia, a phenotype expected for a gain-of-function variants. DESIGN AND METHODS: To functionally characterize the Q967* mutant receptor, both wild-type (WT) and mutant CASR were transiently transfected into HEK293T cells and calcium-sensing receptor (CaSR) protein expression and functions were comparatively evaluated using multiple read-outs. RESULTS: Western blot analysis revealed that the CaSR mutant protein displayed a lower molecular weight compared with the WT, consistent with the loss of the last 122 amino acids in the intracellular domain. Mitogen-activated protein kinase activation and serum responsive element luciferase assays demonstrated that the mutant receptor had higher baseline activity than the WT. Extracellular-signal-regulated kinase/c-Jun N-terminal kinase phosphorylation, however, remained consistently high in the mutant, without significant modulations following exposure to increasing extracellular calcium (Ca2+o) levels, suggesting that the mutant receptor is more sensitive to Ca2+o compared with the WT. CONCLUSIONS: This study provides functional validation of the pathogenicity of a novel nonsense CASR variant, resulting in an abnormally hyperfunctioning protein consistent with the patient's phenotype. Functional analyses indicate that mutant receptor is constitutively active and poorly sensitive to increasing concentrations of extracellular calcium, suggesting that the cytoplasmic tail may contain elements regulating signal transduction.


Assuntos
Hipercalcemia , Hipocalcemia , Adolescente , Humanos , Hipocalcemia/genética , Cálcio , Receptores de Detecção de Cálcio/genética , Células HEK293 , Hipercalcemia/genética , Mutação/genética
3.
Am J Med Genet A ; 194(1): 82-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750385

RESUMO

Brunner syndrome is a recessive X-linked disorder caused by pathogenic variants in the monoamine oxidase A gene (MAOA). It is characterized by distinctive aggressive behavior, mild intellectual disability, sleep disturbances, and typical biochemical alterations deriving from the impaired monoamine metabolism. We herein describe a 5-year-old boy with developmental delay, autistic features, and myoclonic epilepsy, and his mother, who had mild intellectual disability and recurrent episodes of palpitations, headache, abdominal pain, and abdominal bloating. Whole exome sequencing allowed detection of the maternally-inherited variant c.410A>G, (p.Glu137Gly) in the MAOA gene. The subsequent biochemical studies confirmed the MAOA deficiency both in the child and his mother. Given the serotonergic symptoms associated with high serotonin levels found in the mother, treatment with a serotonin reuptake inhibitor and dietary modifications were carried out, resulting in regression of the biochemical abnormalities and partial reduction of symptoms. Our report expands the phenotypic spectrum of Brunner disease, bringing new perspectives on the behavioral and neurodevelopmental phenotype from childhood to adulthood.


Assuntos
Deficiência Intelectual , Masculino , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Pré-Escolar , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mães , Monoaminoxidase/química , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Fenótipo
4.
BMC Med Genomics ; 16(1): 303, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012624

RESUMO

BACKGROUND: In 2018, our center started a program to offer genetic diagnosis to patients with kidney and liver monogenic rare conditions, potentially eligible for organ transplantation. We exploited a clinical exome sequencing approach, followed by analyses of in silico gene panels tailored to clinical suspicions, obtaining detection rates in line with what reported in literature. However, a percentage of patients remains without a definitive genetic diagnosis. This work aims to evaluate the utility of NGS data re-analysis for those patients with an inconclusive or negative genetic test at the time of first analysis considering that (i) the advance of alignment and variant calling processes progressively improve the detection rate, limiting false positives and false negatives; (ii) gene panels are periodically updated and (iii) variant annotation may change over time. METHODS: 114 patients, recruited between 2018 and 2020, with an inconclusive or negative NGS report at the time of first analysis, were included in the study. Re-alignment and variant calling of previously generated sequencing raw data were performed using the GenomSys Variant Analyzer software. RESULTS: 21 previously not reported potentially causative variants were identified in 20 patients. In most cases (n = 19), causal variants were retrieved out of the re-classification from likely benign to variants of unknown significance (VUS). In one case, the variant was included because of inclusion in the analysis of a newly disease-associated gene, not present in the original gene panel, and in another one due to the improved data alignment process. Whenever possible, variants were validated with Sanger sequencing and family segregation studies. As of now, 16 out of 20 patients have been analyzed and variants confirmed in 8 patients. Specifically, in two pediatric patients, causative variants were de novo mutations while in the others, the variant was present also in other affected relatives. In the remaining patients, variants were present also in non-affected parents, raising questions on their re-classification. CONCLUSIONS: Overall, these data indicate that periodic and systematic re-analysis of negative or inconclusive NGS data reports can lead to new variant identification or reclassification in a small but significant proportion of cases, with benefits for patients' management.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Criança , Sequenciamento do Exoma , Software
5.
Am J Med Genet A ; 191(7): 1973-1977, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102432

RESUMO

Fetal intracranial hemorrhage (ICH) may result from a wide array of causes, either associated with maternal or fetal risk factors. In the last decade, monogenic causes of susceptibility to fetal ICH have been described, in particular in association with COL4A1 and COL4A2 genes. A peculiar form of ICH is acute necrotizing encephalitis (ANE), which is characterized by a rapid-onset severe encephalopathy following an abnormal inflammatory response to an otherwise banal infection. It usually affects healthy children and it is thought to be multifactorial, with a genetic predisposition. RANBP2 gene has been extensively associated with ANE susceptibility. We hereby present a unique case of a 42-year-old secundigravida with intrauterine fetal demise at 35 weeks of gestation. Trio-based whole-exome sequencing performed on both parents and fetal DNA showed a de novo likely pathogenic variant in the RANBP2 gene on 2q13. At the fetal autopsy, subtentorial hematoma and cerebral intraparenchymal hemorrhage were present. We speculate that this might be a new phenotypic presentation of RANBP2-associated disease. However, more similar fetal cases need to be reported in order to reinforce this hypothesis.


Assuntos
Hemorragia Cerebral , Leucoencefalite Hemorrágica Aguda , Criança , Feminino , Humanos , Adulto , Leucoencefalite Hemorrágica Aguda/genética , Chaperonas Moleculares/genética , Morte Fetal
7.
Hum Genomics ; 17(1): 10, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782285

RESUMO

PURPOSE: Inherited kidney diseases are among the leading causes of kidney failure in children, resulting in increased mortality, high healthcare costs and need for organ transplantation. Next-generation sequencing technologies can help in the diagnosis of rare monogenic conditions, allowing for optimized medical management and therapeutic choices. METHODS: Clinical exome sequencing (CES) was performed on a cohort of 191 pediatric patients from a single institution, followed by Sanger sequencing to confirm identified variants and for family segregation studies. RESULTS: All patients had a clinical diagnosis of kidney disease: the main disease categories were glomerular diseases (32.5%), ciliopathies (20.4%), CAKUT (17.8%), nephrolithiasis (11.5%) and tubular disease (10.5%). 7.3% of patients presented with other conditions. A conclusive genetic test, based on CES and Sanger validation, was obtained in 37.1% of patients. The highest detection rate was obtained for ciliopathies (74.4%), followed by nephrolithiasis (45.5%), tubular diseases (45%), while most glomerular diseases and CAKUT remained undiagnosed. CONCLUSIONS: Results indicate that genetic testing consistently used in the diagnostic workflow of children with chronic kidney disease can (i) confirm clinical diagnosis, (ii) provide early diagnosis in the case of inherited conditions, (iii) find the genetic cause of previously unrecognized diseases and (iv) tailor transplantation programs.


Assuntos
Ciliopatias , Nefrolitíase , Insuficiência Renal Crônica , Criança , Humanos , Fluxo de Trabalho , Testes Genéticos
8.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672242

RESUMO

The hepatocyte nuclear factor 1ß (HNF1B) gene is involved in the development of specialized epithelia of several organs during the early and late phases of embryogenesis, performing its function mainly by regulating the cell cycle and apoptosis pathways. The first pathogenic variant of HNF1B (namely, R177X) was reported in 1997 and is associated with the maturity-onset diabetes of the young. Since then, more than 230 different HNF1B variants have been reported, revealing a multifaceted syndrome with complex and heterogenous genetic, pathologic, and clinical profiles, mainly affecting the pediatric population. The pancreas and kidneys are the most frequently affected organs, resulting in diabetes, renal cysts, and a decrease in renal function, leading, in 2001, to the definition of HNF1B deficiency syndrome, including renal cysts and diabetes. However, several other organs and systems have since emerged as being affected by HNF1B defect, while diabetes and renal cysts are not always present. Especially, liver involvement has generally been overlooked but recently emerged as particularly relevant (mostly showing chronically elevated liver enzymes) and with a putative relation with tumor development, thus requiring a more granular analysis. Nowadays, HNF1B-associated disease has been recognized as a clinical entity with a broader and more variable multisystem phenotype, but the reasons for the phenotypic heterogeneity are still poorly understood. In this review, we aimed to describe the multifaceted nature of HNF1B deficiency in the pediatric and adult populations: we analyzed the genetic, phenotypic, and clinical features of this complex and misdiagnosed syndrome, covering the most frequent, unusual, and recently identified traits.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Renais Císticas , Humanos , Criança , Fator 1-beta Nuclear de Hepatócito/genética , Rim , Diabetes Mellitus Tipo 2/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/complicações , Pâncreas
9.
Am J Med Genet A ; 191(1): 249-252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36263864

RESUMO

Williams syndrome (WS) is a well-known genetic disorder caused by heterozygous microdeletions of the 7q11.23 chromosome region. The main clinical features of the syndrome are characteristic facial dysmorphisms, cardiovascular and endocrine anomalies, short stature, mild-to-moderate intellectual disability, and a recognizable cognitive and behavioral profile. Differently from large chromosomal imbalances and aneuploidies, mosaicism has only rarely been found in microdeletion syndromes, and mosaic cases with WS phenotype have never been reported. We here describe a 51-year-old female patient with the typical clinical features of WS, whose chromosomal microarray analysis and fluorescence in situ hybridization disclosed a 54%-68% germline mosaicism for 7q11.23 deletion.


Assuntos
Síndrome de Williams , Feminino , Humanos , Síndrome de Williams/diagnóstico , Síndrome de Williams/genética , Hibridização in Situ Fluorescente , Mosaicismo , Análise em Microsséries , Fenótipo , Deleção Cromossômica
10.
Artigo em Inglês | MEDLINE | ID: mdl-36572455

RESUMO

BACKGROUND: Hepatocyte nuclear factor 1B (HNF1B) is a member of the homeodomain-containing family of transcription factors located on 17q12. HNF1B deficiency is associated with a clinical syndrome (kidney and urogenital malformations, maturity-onset diabetes of the young, exocrine pancreatic insufficiency) and to an underdiagnosed liver involvement. Differently from HNF1A, the correlation between hepatocellular carcinoma (HCC) and germline HNF1B deficiency has been poorly evaluated. CASE REPORT: Here, we report a novel case of a syndromic HNF1B-deficient paediatric patient that developed HCC with unique histopathological features characterised by neoplastic syncytial giant cells, which was observed only in one additional case of paediatric cholestatic liver disease of unknown origin. CONCLUSIONS: Our case highlights the influence of HNF1B deficiency in liver disease progression and its putative association with a rare yet specific HCC histotype. We hypothesised that HCC could be secondary to the repressive effect of HNF1B variant on the HNF1A transcriptional activity.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Humanos , Criança , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Fatores Nucleares de Hepatócito , Fator 1-beta Nuclear de Hepatócito/genética
11.
Placenta ; 126: 119-124, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796063

RESUMO

INTRODUCTION: Glypican-3 (GPC3) is an oncofetal protein involved in cellular signaling, strongly expressed in the placenta, absent or diminished in postnatal life, but often increased in human malignancies. Germline loss-of-function variants of GPC3 gene are associated with Simpson-Golabi-Behmel syndrome type 1 (SGBS1), a rare recessive X-linked overgrowth disease characterized by typical facial features, congenital abnormalities, and an increased risk of developing childhood cancers. METHODS: A clinical suspicion of SGBS1 was postulated for a newborn with prenatal history of overgrowth and polyhydramnios, presenting with neonatal weight and length >99th percentile, coarse facies, iris and retinal coloboma, supernumerary nipples, and splenomegaly. While waiting for whole-genome sequencing (WGS) results, we investigated placental GPC3 immunohistochemical expression in the proband, in three additional cases of SGBS1, and disorders commonly associated with fetal macrosomia and/or placentomegaly. RESULTS: WGS in the proband identified a likely pathogenic maternally inherited missense variant in GPC3: c.1645A > G, (p.Ile549Val), and GPC3 immunohistochemistry demonstrated full-thickness loss of stain of the placental parenchyma. The same pattern ("null") was also present in the placentas of three additional cases of SGBS1, but not in those of unaffected controls. DISCUSSION: Immunohistochemical expression of GPC3 in the placenta is highly reproducible. Our findings showed that a "null pattern" of staining is predictive of SGBS1 and represents a valuable aid in the differential diagnosis of fetal macrosomias, allowing targeted genetic testing and earlier diagnosis.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Arritmias Cardíacas/diagnóstico , Criança , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Gigantismo/diagnóstico , Gigantismo/genética , Gigantismo/patologia , Glipicanas/genética , Cardiopatias Congênitas/diagnóstico , Humanos , Imuno-Histoquímica , Recém-Nascido , Deficiência Intelectual/diagnóstico , Placenta/patologia , Gravidez
12.
Orphanet J Rare Dis ; 17(1): 33, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109910

RESUMO

BACKGROUND: Methylmalonic aciduria and homocystinuria, CblC type (OMIM #277400) is the most common disorder of cobalamin intracellular metabolism, an autosomal recessive disease, whose biochemical hallmarks are hyperhomocysteinemia, methylmalonic aciduria and low plasma methionine. Despite being a well-recognized disease for pediatricians, there is scarce awareness of its adult presentation. A thorough analysis and discussion of cobalamin C defect presentation in adult patients has never been extensively performed. This article reviews the published data and adds a new case of the latest onset of symptoms ever described for the disease. RESULTS: We present the emblematic case of a 45-year-old male, describing the diagnostic odyssey he ventured through to get to the appropriate treatment and molecular diagnosis. Furthermore, available clinical, biochemical and molecular data from 22 reports on cases and case series were collected, resulting in 45 adult-onset CblC cases, including our own. We describe the onset of the disease in adulthood, encompassing neurological, psychiatric, renal, ophthalmic and thromboembolic symptoms. In all cases treatment with intramuscular hydroxycobalamin was effective in reversing symptoms. From a molecular point of view adult patients are usually compound heterozygous carriers of a truncating and a non-truncating variant in the MMACHC gene. CONCLUSION: Adult onset CblC disease is a rare disorder whose diagnosis can be delayed due to poor awareness regarding its presenting insidious symptoms and biochemical hallmarks. To avoid misdiagnosis, we suggest that adult onset CblC deficiency is acknowledged as a separate entity from pediatric late onset cases, and that the disease is considered in the differential diagnosis in adult patients with atypical hemolytic uremic syndromes and/or slow unexplained decline in renal function and/or idiopathic neuropathies, spinal cord degenerations, ataxias and/or recurrent thrombosis and/or visual field defects, maculopathy and optic disc atrophy. Plasma homocysteine measurement should be the first line for differential diagnosis when the disease is suspected. To further aid diagnosis, it is important that genes belonging to the intracellular cobalamin pathway are included within gene panels routinely tested for atypical hemolytic uremic syndrome and chronic kidney disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Deficiência de Vitamina B 12 , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Heterozigoto , Homocistinúria/diagnóstico , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredutases/genética , Oxirredutases/uso terapêutico , Vitamina B 12/uso terapêutico , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/genética
13.
Mol Syndromol ; 12(6): 362-371, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34899145

RESUMO

Uni- or bilateral renal agenesis (RA) is a commonly occurring major congenital anomaly impacting fetal and neonatal outcomes. Since the etiology is highly heterogeneous, our aim was to provide a logically structured approach by highlighting the genes in which variants have been identified to be associated with RA and to define the pathways involved in this type of abnormal kidney development. We used Phenolyzer to collect a list of all the genes known as causative for RA. Using ClueGO gene enrichment analysis, we classified the relationship between these genes and the biological processes defined by gene ontology. We identified 287 genes and 69 groups of enriched biological processes. About 50% included pathways directly related to the development of urogenital organ tissues. Several ciliary, axis specification, hindgut development, and endocrine pathways were enriched, which may relate to different clinical presentations of RA. Our gene ontology enrichment analysis shows that genes representing distinct biological pathways are significantly enriched. This knowledge will lead to an improved molecular diagnosis in clinical care when applying genome-wide sequencing approaches. The findings will also allow to further study the biological pathways involved in RA and to identify novel candidate genes and pathways.

14.
Eur J Med Genet ; 64(12): 104374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34740859

RESUMO

3MC syndrome is an autosomal recessive disorder encompassing four rare disorders previously known as the Malpuech, Michels, Mingarelli and Carnevale syndromes. They are characterized by a variable spectrum of abnormalities, including facial dysmorphisms, along with genital, limb and vesico-renal anomalies. The syndrome was originally attributed to mutations in MASP1 and COLEC11, which code for proteins involved in the lectin complement pathway. More recently, mutations in COLEC10, a third gene coding for collectin CL-L1, were identified in a limited number of patients with 3MC syndrome. Here we describe a 4-years-old patient with typical 3MC phenotypic characteristics, including blepharophimosis, telecanthus, high arched eyebrows, fifth finger clinodactyly, sacral dimple and horseshoe kidney. Initial genetic analysis was based on clinical exome sequencing, where only MASP1 and COLEC11 genes are present, without evidence of pathogenic variants. Sanger sequencing of COLEC10 identified the homozygous frameshift variant c.807_810delCTGT; p.Cys270Serfs*33, which results in the loss of the natural stop codon. The resulting protein is 24 amino acids longer and lacks a conserved cysteine residue (Cys270), which could affect protein folding. Segregation studies confirmed that both parents were carriers for the variant: interestingly they originate from the same area of Apulia in southern Italy. Plasma levels of CL-L1 in the patient and her parents were within normal range, suggesting that this variant does not modify transcription or secretion. However, the variant affects the chemo-attractive feature of CL-L1, as HeLa cells migrate significantly less in response to the mutant protein compared to the wild-type one.


Assuntos
Colectinas/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Mutação/genética , Adolescente , Adulto , Linhagem Celular Tumoral , Pré-Escolar , Face/anormalidades , Feminino , Células HeLa , Humanos , Masculino , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
15.
Am J Med Genet A ; 185(12): 3728-3739, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34346154

RESUMO

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.


Assuntos
Anormalidades Múltiplas/genética , Encéfalo/metabolismo , Cinesinas/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Anormalidades Múltiplas/patologia , Encéfalo/anormalidades , Encéfalo/patologia , Epilepsia/genética , Epilepsia/patologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/patologia
16.
Clin Genet ; 100(5): 624-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402524

RESUMO

Kaposiform hemangioendothelioma (KHE) is a rare locally aggressive mixed vascular tumor, with typical onset in early childhood and characterized by progressive angio- and lymphangiogenesis. Its etiopathogenesis and molecular bases are still unclear. Here, we report the first case of congenital KHE harboring a PIK3CA mosaic pathogenic variant (c.323G > A, p.Arg108His) in a boy with very subtle PIK3CA-related overgrowth spectrum (PROS) features. This finding provides insights into the pathophysiology of KHE, offering targeted therapeutic options by inhibition of the PI3K/Akt/mTOR pathway. We propose the inclusion of this mixed lymphatic and vascular anomaly within the PROS.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Hemangioendotelioma/diagnóstico , Hemangioendotelioma/genética , Síndrome de Kasabach-Merritt/diagnóstico , Síndrome de Kasabach-Merritt/genética , Mutação , Fenótipo , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/genética , Alelos , Substituição de Aminoácidos , Biópsia , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imuno-Histoquímica , Lactente , Masculino , Radiografia
17.
J Nephrol ; 34(5): 1767-1781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33226606

RESUMO

BACKGROUND: A considerable minority of patients on waiting lists for kidney transplantation either have no diagnosis (and fall into the subset of undiagnosed cases) because kidney biopsy was not performed or histological findings were non-specific, or do not fall into any well-defined clinical category. Some of these patients might be affected by a previously unrecognised monogenic disease. METHODS: Through a multidisciplinary cooperative effort, we built an analytical pipeline to identify patients with chronic kidney disease (CKD) with a clinical suspicion of a monogenic condition or without a well-defined diagnosis. Following the stringent phenotypical and clinical characterization required by the flowchart, candidates meeting these criteria were further investigated by clinical exome sequencing followed by in silico analysis of 225 kidney-disease-related genes. RESULTS: By using an ad hoc web-based platform, we enrolled 160 patients from 13 different Nephrology and Genetics Units located across the Piedmont region over 15 months. A preliminary "remote" evaluation based on well-defined inclusion criteria allowed us to define eligibility for NGS analysis. Among the 138 recruited patients, 52 (37.7%) were children and 86 (62.3%) were adults. Up to 48% of them had a positive family history for kidney disease. Overall, applying this workflow led to the identification of genetic variants potentially explaining the phenotype in 78 (56.5%) cases. CONCLUSIONS: These results underline the importance of clinical exome sequencing as a versatile and highly useful, non-invasive tool for genetic diagnosis of kidney diseases. Identifying patients who can benefit from targeted therapies, and improving the management of organ transplantation are further expected applications.


Assuntos
Exoma , Insuficiência Renal Crônica , Testes Genéticos , Humanos , Itália , Sequenciamento do Exoma
18.
J Med Genet ; 57(12): 797-807, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32430361

RESUMO

Motor kinesins are a family of evolutionary conserved proteins involved in intracellular trafficking of various cargoes, first described in the context of axonal transport. They were discovered to have a key importance in cell-cycle dynamics and progression, including chromosomal condensation and alignment, spindle formation and cytokinesis, as well as ciliogenesis and cilia function. Recent evidence suggests that impairment of kinesins is associated with a variety of human diseases consistent with their functions and evolutionary conservation. Through the advent of gene identification using genome-wide sequencing approaches, their role in monogenic disorders now emerges, particularly for birth defects, in isolated as well as multiple congenital anomalies. We can observe recurrent phenotypical themes such as microcephaly, certain brain anomalies, and anomalies of the kidney and urinary tract, as well as syndromic phenotypes reminiscent of ciliopathies. Together with the molecular and functional data, we suggest understanding these 'kinesinopathies' as a recognisable entity with potential value for research approaches and clinical care.


Assuntos
Ciliopatias/genética , Anormalidades Congênitas/genética , Predisposição Genética para Doença , Cinesinas/genética , Encéfalo/anormalidades , Encéfalo/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/patologia , Anormalidades Congênitas/patologia , Humanos , Rim/anormalidades , Rim/patologia , Microcefalia/genética , Microcefalia/patologia , Família Multigênica/genética , Fenótipo , Sistema Urinário/anormalidades , Sistema Urinário/patologia
19.
Case Rep Genet ; 2017: 5181624, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523196

RESUMO

Cri du Chat syndrome (CdC) is a chromosomal abnormality (deletion of short arm of chromosome 5) associated with intellectual disability and typical anatomical abnormalities. Research up to now focuses on the management of the disease during childhood. The longer lifespan of these patients warrants deeper investigations of how and if aging could be affected by the syndrome. We decided to focus on the association of the disease with proliferative disorders. Data on proliferative disorders in a cohort of 321 patients from Italian and German Cri du Chat databases were collected. A neoplasia was present in four patients (age 10-50 yrs), and a fifth patient developed a cholesteatoma during childhood. It is of interest that two cases had an early onset of the neoplasia as compared to the expected age of development in the general population. The chromosome region deleted in 5p does not contain genes whose haploinsufficiency is a well-known main cause of the proliferative disorders observed. We nonetheless believe that reporting even sporadic cases of proliferative disorders in CdC patients may increase our knowledge as to the natural history of the disease. In conclusion, available information suggests that surveillance for cancer development in CdC can follow the guidelines for the general population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...